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�-Helices are peculiar atomic arrangements characterizing

protein structures. Their occurrence can be used within

crystallographic methods as minimal a priori information to

drive the phasing process towards solution. Recently, brute-

force methods have been developed which search for all

possible positions of �-helices in the crystal cell by molecular

replacement and explore all of them systematically. Knowing

the �-helix orientations in advance would be a great

advantage for this kind of approach. For this purpose, a fully

automatic procedure to find �-helix orientations within the

Patterson map has been developed. The method is based on

Fourier techniques specifically addressed to the identification

of helical shapes and operating on Patterson maps described

in spherical coordinates. It supplies a list of candidate

orientations, which are then refined by using a figure of merit

based on a rotation function calculated for a template

polyalanine helix oriented along the current direction. The

orientation search algorithm has been optimized to work at

3 Å resolution, while the candidates are refined against all

measured reflections. The procedure has been applied to a

large number of protein test structures, showing an overall

efficiency of 77% in finding �-helix orientations, which

decreases to 48% on limiting the number of candidate

solutions (to 13 on average). The information obtained may

be used in many aspects in the framework of molecular-

replacement phasing, as well as to constrain the generation of

models in computational modelling programs. The procedure

will be accessible through the next release of IL MILIONE

and could be decisive in the solution of new unknown

structures.
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1. Introduction

Modern proteomic and structure-based drug-discovery

projects demand fast and efficient platforms for high-

throughput crystallography (Blundell et al., 2002). In this

respect, automated crystal structure-determination pipelines

have been organized which consist of a number of crystallo-

graphic software programs executed by several decision-

makers (Panjikar et al., 2005; Keegan & Winn, 2007; Long et

al., 2008). The most frequent phasing method used to achieve

structure solution is molecular replacement (MR), which is

typically preceded by a step in which suitable protein models

are searched for in the Protein Data Bank (PDB) or generated

by ab initio or comparative modelling programs (Rigden et

al., 2008; Caliandro et al., 2009). Difficult cases, for which a

homologous model close enough to the target structure is not

available, escape from this scheme. In these cases, limited

experimental resolution and/or a lack of heavy atoms in the

crystal often also prevents solution by ab initio or SAD/MAD
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phasing approaches. To handle such challenging cases, phasing

procedures have been developed which make use of minimal

a priori knowledge, consisting of limited well conserved

domains, heavy atoms (when present) or ideal �-helix poly-

alanine fragments (Dodson & Woolfson, 2009; Bernstein et al.,

1977). Here, the bottleneck is constituted by the MR search,

which has to cope with the difficult task of finding the correct

position in the unit cell of a very small fraction of the total

scattering matter. As a result, a double drawback occurs: on

one hand, a long list of possible solutions is returned by the

MR rotation and translation steps; on the other, they all have

similar figures of merit, so they cannot be properly ranked.

Recently, a procedure for ab initio phasing at 2 Å resolution

has been proposed based on a brute-force approach (Rodrı́-

guez et al., 2009). It has the MR location of model fragments

such as small �-helices as a first step and phase refinement

and extension by electron-density modification and model-

building cycles as a second step. The drawback of this

approach is that a large number of equally probable candidate

solutions are obtained after the first step and all of them are

submitted to the second step, which is typically much slower

than the first step.

This problem triggered the idea underlying the present

paper: to collect the maximum amount of a priori information

about conserved structural fragments from crystallographic

data prior to phasing. In order to pursue this aim, the

Patterson map appears to be the ideal source of information,

since it is directly available from diffraction intensities via a

transform and does not need phases to be determined. On the

other hand, �-helices are the ideal structural fragments to

consider for proteins, since they are present in 90% of all

known protein structures and have very distinctive features.

The concept of recognizing molecules with pseudo-helical

symmetry in Patterson maps was pursued in the very first

studies of DNA (Cochran et al., 1952; Franklin & Gosling,

1953, 1955), RNA (Kim & Rich, 1969; Sakurai et al., 1971) and

protein structures (Magdoff et al., 1956) and, more recently, by

Kondo et al. (2008). Thumiger (2008) was the first to propose

the use of the Fourier transform to highlight the repetition

of the Patterson function related to the pitch of �-helices. He

applied it to a single protein composed of three long parallel

helices (PDB entry 1s2x). A proof of principle for an auto-

matic application of the method was made by Mazzone et al.

(2011), which identified �-helices in Patterson maps calculated

from several protein structures deposited in the PDB. The

present paper deals with real crystallographic data and

demonstrates the possibility of identifying �-helices in

Patterson maps of large numbers of proteins.

The paper is organized as follows: the procedure is

described in x2, together with the criteria used to check the

results. The applications are described in x3, in which the

results obtained from three tests, representing an easy, an

intermediate and a difficult case, are reported in detail and the

averaged efficiencies resulting from extensive tests are given.

Possible applications of the information obtained by the

procedure are outlined in x4.

2. Methods

Our approach for identifying �-helices in the Patterson map of

proteins consists of two steps.

(i) Finding the �-helix candidate orientations within the

Patterson map.

(ii) Selecting the best candidate orientations. Three selec-

tion stages may be identified in this step.

In addition, procedures for automatic checking of the results

of the method have been developed, which include determi-

nation of the axis orientation of the helices of the target

protein from its known atomic coordinates and comparison

of this orientation with those found by the procedure. The

algorithm is shown schematically in Fig. 1 and the single steps

are described in detail below.

2.1. Finding the a-helix candidate orientations

As is well known, the peaks in the Patterson map corre-

spond to interatomic vectors of the crystal structure that it

refers to. The map is defined as the Fourier transform of the

diffracted intensities,

PðuÞ ¼ FT½jFðhÞj2� ¼ FT
PN
i<j

fifj exp½�2�ihðri � rjÞ�

( )
; ð1Þ

research papers

2 Caliandro et al. � Automatic �-helix identification Acta Cryst. (2012). D68, 1–12

Figure 1
Scheme of the �-helix identification procedure. Boxes indicating
operations belonging to step 1 (in unbroken black lines) and step 2 (in
dashed red lines) are drawn. Three selection stages may be identified in
step 2 and are denoted by the letters A, B and C.



where P(u) is the Patterson map, |F(h)| are the measured

structure-factor amplitudes for reflection h, fi and ri are the

scattering factor and position, respectively, of the ith atom and

N is the number of atoms in the crystal cell. Although this

interpretation is strictly valid only at atomic data resolution,

the Patterson map retains information about interatomic

patterns even at lower resolution. If �-helices are considered,

they have two distinctive features that can be used for their

recognition: their directionality (their atoms are arranged

preferentially along their axis) and periodicity (they roughly

repeat themselves with a given pitch). The former suggests the

use of spherical coordinates, where the radial coordinate can

be used to monitor the data variability; the latter suggests the

use of Fourier filtering, which, operating on the radial co-

ordinate, can highlight the features occurring at a given

frequency. The characteristics of the signal sought are as

follows. Each turn of an �-helix contains 3.6 residues. If the

side-chain contribution is neglected and the backbone atoms

are fitted by an idealized helix, this helix has a pitch of

p� = 5.4 Å. The radial profile of an �-helix along the direction

of its axis resulting from a Patterson map calculated at 3 Å

resolution is shown in Fig. 2. It was obtained by considering a

15-residue �-helix extracted from the structure with PDB code

3kut (with P1 symmetry), rotating it around the x axis (with

length a = 26.3 Å) and calculating the structure factors for

reflections to 3 Å resolution. Besides the expected periodicity

of the Patterson peaks, a decrease in their intensity is shown

because the number of interatomic peaks of given length

decreases as the length increases. In Fig. 2 the difference

between a polyalanine and an all-atom helix profile may also

be appreciated, indicating that the noise introduced by the

side-chain variability along the helix marginally affects the

signal. A Fourier transform may be applied to the Patterson

radial profile along a given direction n̂n, according to the

formula

Gn̂nð�Þ ¼ FT½Pn̂nðrÞ� ¼
RRmax

Rmin

Pn̂nðrÞ expð�2�i�rÞ dr; ð2Þ

where Rmin and Rmax define the radial range considered for

filtering and � is the dual variable of r. As pointed out in

Thumiger (2008), the power spectrum jGn̂nð�Þj
2 is a useful

quantity for the recognition of secondary-structure elements

in the Patterson map, since it can highlight signals occurring at

the characteristic frequency 1/p�.

In view of these findings, a procedure to identify �-helix

directions in the Patterson maps of proteins has been imple-

mented consisting of the following steps.

(i) Normalized structure factors E(h) are calculated

according to the Wilson procedure (Wilson, 1942) and

reflections with resolution lower than 3 Å are selected for

further analysis.

(ii) The Patterson map P(u) is calculated with coefficients

|E(h)|2 by using the discrete Fourier transform algorithm

implemented in the FFTW routines (Frigo & Johnson, 2005).

By default, this is calculated in the crystallographic (Carte-

sian) coordinate system. Let us denote UC = (ux
c, uy

c, uz
c), the

vector u in matrix notation.

(iii) A grid is defined by using spherical coordinates (r, �, ’)

with zenith direction z and azimuth axis x. The variable

t = cos� is introduced in place of the inclination angle � to

ensure a uniform sampling along the z axis. The ranges used

are

r 2 ðRmin;RmaxÞ; t 2 ð�1; 1Þ; ’ 2 ð��; �Þ; ð3Þ

which correspond to a semi-sphere including the independent

part of the Patterson map (restrictions introduced by the

space-group symmetry are accounted for in a later stage of the

procedure). The value of Rmin is chosen to be 3.5 Å to avoid

contributions from the Patterson origin peak (see the dashed

line in Fig. 2), while Rmax is related to the lengths a, b, c of the

unit-cell axes by the equation

Rmax ¼ maxða; b; cÞ=2; ð4Þ

since the information from the Patterson map is all contained

in half the cell. The spacing is chosen as 0.5 Å for the radial

axis and 0.05 and 3� for the variables t and ’, respectively.

(iv) The Patterson map is converted into spherical coordi-

nates according to the equation

PðUSÞ ¼ InterpfP½A�1g�1
ðUSÞ�g; ð5Þ

where US = (ur, ut, u’) is the vector u expressed in spherical

coordinates, g is a function which allows conversion from

Cartesian to spherical coordinates in an orthonormal frame,

US = g(UCO),1 A is a matrix that orthonormalizes the crys-

tallographic coordinates, UCO = AUC, and Interp indicates the

operation of linear interpolation in a grid of 19 points centred

on the point to be interpolated. During this operation, the

density of the points falling outside the half-cell is set to zero

in order to avoid sampling of the centrosymmetric part of the

Patterson map. This is the reason for the truncation at 14 Å of

the profile shown in Fig. 2.
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Figure 2
Radial profile of the Patterson map of a polyalanine (unbroken line) and
all-atoms (dashed line) �-helix of 15 residues (SPESLRSKVDEAVAV)
in the direction coinciding with its axis. The dashed line indicates the
minimum radius used for the Fourier analysis.

1 For our choice of variables, g(ux, uy, uz) = [(ux
2, uy

2, uz
2)1/2, uz/(ux

2, uy
2, uz

2)1/2,
tan�1(uy/ux)] and g�1(ur, ut, u’) = [ur(1 � ut

2)1/2cos(u’), ur(1 � ut
2)1/2

� sin(u’), urut], where UCO = (ux, uy, uz).



(v) A power spectrum jGn̂nð�Þj
2 = FT[P(ur, ut, u’)] is calcu-

lated for each direction n̂n defined by the pair (t, ’) within the

ranges of (3).

(vi) The grid number k corresponding to the digital

frequency � = k{1/[npad(Rmax � Rmin)]} closest to the char-

acteristic frequency 1/p� of the helix is given by

k ¼ Int
npadðRmax � RminÞ

P�

� �
; ð6Þ

where npad is a multiplicative factor introduced by applying

the technique of zero-padding to the Fourier transform, with

the aim of increasing the frequency sampling. It is set to a

value of 4.

(vii) The power-spectrum map is modified by considering

only the values in a slice centred on � defined by three sections

at constant frequency and having intensities I > hIi + �(I),

where the mean hIi and the standard deviation �(I) values are

calculated within the selected slice. This map will be denoted

jGn̂nð�Þj
2.

(viii) A peak search is performed on jGn̂nð�Þj
2 within the

angular intervals of (3). In the presence of crystallographic

symmetry they are restricted as reported in Appendix A. The

peak search is made by a 19-point interpolation within the

selected sections.

As an example, Fig. 3 shows the power spectrum calculated

from the radial profile of Fig. 2 for increasing values of the

parameter npad. The peaks at � corresponding to the helix

signal are highlighted by arrows. They are well separated from

the peak at the origin for padding factors greater than 1. For

npad = 4 the peaks at � of the all-atoms (violet) and polyalanine

(black) �-helix profiles coincide.

2.2. Selecting the candidate orientations

The peaks obtained at the end of the procedure described

above represent the candidate �-helix orientations available at

selection stage A. They are checked and improved using the

methods described in this section.

As a first step, the list of peaks undergoes a hierarchical

clustering performed using the group-average method, which

has the effect of grouping similar orientations, thus reducing

their numbers and improving their estimates. The distance

matrix is calculated by referring to the intersections of the

helix axes with a sphere of radius 1 Å, while the threshold

that defines the clusters is chosen according to the method

described in x2.3.2. The original list of peaks is replaced by a

list of representative orientations calculated by averaging the

orientations belonging to the same cluster. The height of the

peaks, as calculated by the peak-search procedure, is used to

weight the average and to assign a height to the representative

orientations, which is chosen as the maximum among the

heights of the in-cluster peaks. Both the distance matrix and

the representative orientations are calculated by considering

the symmetry operations of the Laue group to which the

protein space group belongs. The representative orientations

are sorted according to their heights and represent the set of

solutions at selection stage B.

A further selection of the candidate solutions is achieved by

means of a figure of merit developed in analogy to the rotation

function used in MR programs. A polyalanine helix is used as

a model consisting of Nsample atoms. It is placed in the same

orientation as the candidate solution to be checked by

multiplying its atomic coordinates in the orthonormal Carte-

sian frame rj
ort, j = (1, Nsample) by the rotation matrix M(z, ’),

depending on the spherical angles of the given candidate

orientation. The rotation-dependent part of the structure

factors is then calculated as

Pm
s¼1

j�ðhRsÞj
2
¼
Pm
s¼1

PNsample

j¼1

fj expði2�hRsAMrort
j Þ

�����
�����

2

; ð7Þ

where Rs, s = (1, m) are the rotation matrices of the symmetry

space group and A is the same orthonormalization matrix as in

(5). The correlation (CORR) between the observed ampli-

tudes |F(h)|2 and the sum
Pm

s¼1 j�ðhRsÞj
2 is expected to be

larger for the correct rotation M (DeLano & Brünger, 1995;

Caliandro et al., 2006); therefore, it is used as a criterion to

select the candidate orientations. All the measured reflections

are used in this calculation. In contrast to MR, in our case the

rotation matrix M is determined by only two angles, since the

rotation about the axis of the helix is not specified. However,

the presence of side chains in the target structure breaks the

approximated rotation invariance of a polyalanine helix. To

account for this, three values of CORR are calculated by

rotating the sample helix by 120� around its axis oriented

according to M. The maximum of these three values is

considered as the figure of merit associated with the candidate

orientation. The solutions are ordered according to this figure

of merit and selected using the criterion

CORR� CORRmin

CORRmax � CORRmin

> 0:6: ð8Þ

They represent the final candidate solutions which are avail-

able at selection stage C.
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Figure 3
Radial profile of the power spectrum jGn̂nð�Þj

2 of a polyalanine �-helix in
the direction coinciding with its axis obtained for different values of the
zero-padding parameter npad. The all-atoms �-helix profile (dashed line)
is only reported for npad = 4.



2.3. Checking the results

In order to validate the procedure, the list of candidate helix

orientations needs to be checked against the true �-helix

directions in the case of structures already deposited in the

PDB. With this aim, an automatic checking protocol has been

developed which (i) determines �-helix orientations from the

coordinates of their atoms and (ii) compares these orienta-

tions with those obtained using our procedure. The protocol

will be described in the following two subsections.

2.3.1. Calculus of the orientation of the helix axis. The

residues belonging to �-helices are selected within the PDB

file: they are all considered as alanine residues. The coordi-

nates of the corresponding atoms are used to calculate the

orientation of the helix axis by using a combination of two

methods. The first method involves the following steps.

(i) Calculation of the centre of the helix (x1
o, x2

o, x3
o) and of its

tensor of inertia Iij =
P
ðxi � xo

i Þðxj � xo
j Þ, where the sum is

over all atoms belonging to the helix.

(ii) Diagonalization of the tensor through calculation of its

eigenvalues.

(iii) The eigenvector corresponding to the higher eigen-

value then represents the direction of the axis of the helix.

The steps of the second method are as follows.

(i) Calculation of the centre of the atoms of the first three

residues of the helix.

(ii) Calculation of the centre of the atoms of the last three

residues of the helix.

(iii) The direction cosines of the line passing through the

two points then identify the orientation of the axis of the helix.

The directions from the two methods are combined by vector

sum, since for helices with more than ten residues the two

methods give results that are in agreement within a few

degrees. In the case of symmetry the directions are referred

to the asymmetric unit of the rotation group, as described in

Appendix A. These estimations have been checked by the

program HELFIT (Enkhbayar et al., 2008), which fits three-

dimensional data points with a continuous helix by the total

least-squares method, finding an agreement within 5� in both �
and ’ with our results.

2.3.2. Comparison among helix orientations. To compare

two helix orientations, we used the distance between their

intersection points with a sphere of radius 1 Å determined in

an orthonormal frame (dist). In the case of symmetry, dist is

the minimum distance among those calculated between a

given direction and all the symmetry-equivalent directions to

the other. The threshold value to be used for dist should be

related to the error in the determination of the helix axis

orientation (err). This can be estimated by considering the

scheme in Fig. 4(a). The distance D between the intersection

points on the unit sphere of the two extreme orientations for

an axis passing through the helix is related to the length L and

radius R of the helix by the equation

D ¼
2R

ðL2 þ R2Þ
1=2
: ð9Þ

For �-helices, R ’ 2.4 Å and L ’ 1.4Nres, where Nres is the

number of residues in the helix, so that D depends on the

number of residues in the helix. A reasonable estimate for err

is to consider a cone of angle � around the true axis. This

corresponds to a value of the distance in the unit sphere of

D/2, the trend of which as a function of Nres is reported in

Fig. 4(b). A dynamic threshold of the distance between two

orientations has hence been used throughout the procedure,
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Figure 4
Scheme showing the computation of the error in the determination of the axis of an �-helix (a) and the curve of the estimated error as a function of the
number of residues in the helix (b). The horizontal lines indicate the lower and upper limits of applicability of the dynamic threshold in our procedure.



the value of which depends on the length of the helix to be

searched according to (9).

The two horizontal lines in Fig. 4(b) indicate the limits of

applicability of the dynamic threshold. At the lower limit,

helices with less than eight residues have diverging err values.

On the other hand, more than 3.6 � 2 = 7.2 residues are

necessary to complete two turns of the helix, which give rise to

a complete peak in its Patterson radial profile. Therefore, the

procedure cannot be applied to helices with less than eight

residues. At the upper limit, err is dominated by the angular

step chosen to sample the grid in spherical coordinates. By

considering the steps adopted for the variables (t, ’), the dist

of two orientations passing through two contiguous grid points

can be calculated as a function of the spherical coordinates.

From Fig. 5, it can be seen that it does not depend on ’ and

that it is nearly constant in t to a value of 0.062, apart from

directions parallel to the z axis, where it diverges. Half of this

distance, which corresponds to �-helices of 30 residues

according to (9), is a reasonable estimate of the minimum

sampling error. Therefore, the dynamic threshold is not

applied to �-helices with more than 30 residues.

In summary, two directions are considered to be close if the

following criterion is satisfied:

dist<

2:4

½ð1:4NresÞ
2
þ 2:42�

1=2
if Nres 2 (8, 30)

0:031 if Nres > 30

8<
: : ð10Þ

These arguments do not apply in case of bent helices, for

which higher errors are expected. On the other hand, their

identification by the algorithm here proposed is hampered by

the fact that the repetition of their Patterson peaks does not

occur along a straight line, so frequency filtering in the radial

direction is not effective.

In the framework of the clustering procedure, a threshold

value of 0.2 was used to define a cluster, which corresponds to

the higher allowed value of dist.

3. Results and discussion

3.1. Test structures

The procedure has been extensively tested on known crystal

structures by using diffraction data deposited in the PDB. 74

proteins were selected from the database from those con-

taining at least one �-helix with more than seven residues,

which represents the limit of applicability of the procedure.

The chosen structures have a wide coverage of crystallo-

graphic symmetry, data resolution (ranging from 0.8 to 3.0 Å)

and total number of residues in the asymmetric unit (ranging

from 100 to 2500). A wide structural variability is also present,

with proteins belonging to CATH (Orengo et al., 1997) classes

mainly � and �–� included in the test sample. Two further

structures, 3gwh and 1gmg, were added to the test set as they

have been used to validate other programs. The main crys-

tallographic properties of the 76 test structures are reported in

Table S1.2

The procedure is organized so that the number of residues

of the longest helices in the structure (NresMax), which is

usually obtainable from a bioinformatics analysis of the

protein sequence, can be supplied as input. It is used to

redefine the parameter Rmax (= 1.4NresMax) and to set the

parameter Nsample (= 5NresMax).

The performance of the procedure was monitored using two

efficiencies,

effhelix ¼
number of helices found

number of helices in the structure
;

effsol ¼
number of true solutions

number of solutions
; ð11Þ

where the helix is ‘found’ if at least one solution of the

procedure is close to it. In the same way, a solution is tagged as

‘true’ if at least one helix of the structure has its direction close

to it. The criterion for closeness is specific for each helix and is

given by (10). The percentage of false positives in the sample

of selected solutions is given by 1 � effsol. The information

on the number of �-helices with more than seven residues and

their length was read from the PDB file of each test structure

and used to implement criterion (10) and to calculate the

efficiencies (11).
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Figure 5
Distance between the intersections of two orientations passing through
two consecutive grid points with a sphere of radius 1 Å as a function of
the spherical coordinates (t, ’).

Figure 6
Crystal structure of PDB entry 1dy5. �-Helices containing more than
seven residues are numbered.

2 Supplementary material has been deposited in the IUCr electronic archive
(Reference: RR5004). Services for accessing this material are described at the
back of the journal.



3.2. The 1dy5 test case

The protein ribonuclease A (PDB entry 1dy5; Esposito et

al., 2000) has crystallographic data to 0.9 Å resolution in space

group P21. Its crystal structure is shown in Fig. 6, with numbers

indicating helices with more than seven residues. It is consti-

tuted of two monomers of 124 residues each in the asymmetric

unit related by a quasi-perfect pseudo-translation symmetry.

This particular type of noncrystallographic symmetry doubles

the contribution from intramolecular vectors, so that the

contribution from the second monomer does not constitute

noise for the first one. The projection onto the (t, ’) plane of

its Patterson function transformed in spherical coordinates

and of the corresponding power spectrum jGn̂nð�Þj
2 are shown
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Figure 7
Projection in the plane (t, ’) of the Patterson function (a) and the power spectrum jGn̂nð�Þj

2 (b) for 1dy5. The horizontal dashed line indicates the
restriction introduced by the space-group symmetry.

Figure 8
Section of the power spectrum jGn̂nð�Þj

2 in the plane (t, ’) for 1dy5
obtained by filtering jGn̂nð�Þj

2 at the characteristic frequency � for �-helix
identification. The boxes are centred on the �-helix directions calculated
from the published coordinates for chain A (red) and chain B (blue). The
lengths of their sides are equal to the steps used to define the grid. The
dashed line indicates the restriction introduced by the space-group
symmetry.

Figure 9
Representation of the true helix directions (coloured dots) and candidate
solutions found at stages A (dots), B (crosses) and C (circles) of the
procedure for the 1dy5 structure.



in Figs. 7(a) and 7(b), respectively. The monoclinic crystallo-

graphic symmetry introduces a symmetry axis, which is shown

as a dashed line. The section jGn̂nð�Þj
2, obtained as described

in x2.1 (point v), is shown in Fig. 8, together with the �-helix

directions of the published structure, shown by a box of side

equal to the grid step. Because of the pseudo-translational

symmetry, they occur in doublets, shown in different colours.

The candidate directions found by the peak search applied to

the asymmetric unit of section jGn̂nð�Þj
2 are reported in Fig. 9

(black dots), together with the true �-helix directions

(coloured dots) and the candidate solutions obtained at stages

B and C, which are shown as crosses and circles, respectively.

Further details of the number of solutions obtained at the

different selection stages, the values of the efficiencies defined

by (11) and the minimum distance between the candidate

solutions and the true directions are given in Table 1. This

resulted in all of the �-helix directions of the protein being

found in the first four solutions.

3.3. The 2qu5 test case

The kinase domain (PDB entry 2qu5; Potashman et al.,

2007) represents a more challenging case for �-helix identifi-

cation. Its structure, reported in Fig. 10, is constituted of two

domains, one classified as �–� and the other as mainly �. Its

space group, data resolution and number of residues in the

asymmetric unit are P21212, 2.95 Å and 314, respectively. The
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Figure 10
Crystal structure of PDB entry 2qu5. �-Helices containing more than
seven residues are numbered.

Table 1
Results of the �-helix identification procedure applied to protein 1dy5.

The stages of the procedure are as indicated in Fig. 1. For each helix, the
minimum distance from the direction calculated by the published coordinates
(dist) and the order number (ord) are reported for the candidate solutions that
satisfy the criteria for its identification (10). In the case of more solutions, the
closest solution is reported in bold. In the first column, the number of residues
and (t, ’) position of each helix is shown.

dist (Å)/ord

Stage A Stage B Stage C

Helix 1: 11 residues (�0.13, 48.8) 0.14/5, 6, 12 0.13/4 0.13/3
Helix 2: 10 residues (�0.22, 31.3) 0.08/2, 4, 13 0.11/2, 9 0.11/1, 2
Helix 3: eight residues (�0.67, 88.0) 0.12/26 0.16/15 0.16/4
Helix 4: 11 residues (�0.07, 46.0) 0.07/5, 6, 10 0.08/4 0.08/3
Helix 5: ten residues (�0.20, 31.8) 0.07/2, 4, 13 0.09/2, 9 0.09/1, 2
Helix 6: eight residues (�0.67, 86.4) 0.11/25, 26 0.15/15 0.15/4
No. of solutions 43 20 14
effhelix (%) 100 100 100
effsol (%) 19 20 29

Figure 11
Projection of the power spectrum jGn̂nð�Þj

2 (a) and section jGn̂nð�Þj
2 (b) in the plane (t, ’) for 2qu5. The boxes are centred on the �-helix directions

calculated from the published coordinates for the �–� (blue) and mainly � (red) domains. The lengths of their sides are equal to the steps used to define
the grid. Dashed lines indicate the restriction introduced by the space-group symmetry.



jGn̂nð�Þj
2 projection and the jGn̂nð�Þj

2 section, shown in Fig. 11,

show completely different features. The orthorhombic

symmetry manifests itself as two axes, which are shown as

dashed lines. The results of the procedure are summarized in

Table 2. It can be seen that helices 1, 5 and 8 are not identified

within the solutions retained at step B and C despite being

composed of 17, 17 and 19 residues, respectively. It is worth

noting that helices 1 and 6 are very flexible (their averaged

thermal factors are above 70 Å2, with those of the remaining

helices being around 40 Å2) and that helix 5 is slightly bent.

3.4. The 1b9o test case

The efficiency of identification was found to strongly

depend on the peculiar tertiary-structure arrangement of the

protein. As an example, a more difficult structure for the

procedure was found to be �-lactalbumin (PDB entry 1b9o;

Harata et al., 1999), shown in Fig. 12. It belongs to space group

P212121 with 1.15 Å resolution and a 71% completeness for

reflections lower than 4 Å. The signal from the two helices

with more than seven residues is hidden by the structural

fragments composed of residues 5–21 and 101–108, which are

shown as blue and black sticks, respectively, in Fig. 12. They

include pieces of �-helices and 310-helices, interspersed with

turns, which run along different directions. As a check, the

procedure was applied to amplitudes calculated from

published coordinates for different selections of atoms. The

results obtained at stage C and reported in Table 3 prove that

the structural fragment 5–21 interferes with the signal from

helix 1, while the structural fragment 101–108 interferes with

the signal from helix 2.

3.5. The 3gwh test case

The phosphotransferase system regulation domain II (PDB

entry 3gwh) is a five-helix bundle of 111 amino acids which

forms a dimer with a substantial deviation from twofold

symmetry. It was solved using the program ARCIMBOLDO

(Rodrı́guez et al., 2009), which adopts the brute-force approach

described in x1. The MR search, which was accomplished by

the program Phaser (McCoy et al., 2007), produced 49 solu-

tions (rotation + translation), with no relevant ranking for a

single �-helical polyalanine fragment of 14 residues, which

were then combined to search for multi-fragment solutions.

The structure was solved by refining one of the 1473 solutions

obtained for the three-fragment search. Our procedure gives

9/10 correct �-helix orientations at step A, with 188 candidate

solutions, seven of which are still present at step B, with 31

candidate solutions. Ranking them by CORR leads to five

correct orientations with 16 selected solutions (step C). All of

the correct orientations are found in the top four solutions,

considering that the three helices have very similar orienta-

tions (they differ at most by dist = 0.10). Although a direct

comparison with the ARCIMBOLDO result is not possible,

since only the problem of finding the correct orientation of a

single �-helix is addressed by our procedure, we stress the fact

that a list of well ranked candidate rotation solutions has been
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Figure 12
Crystal structure of protein 1b9o. �-Helices containing more than seven
residues are numbered. Regions representing noise for helix 1 (blue) and
helix 2 (black) are highlighted by sticks.

Table 2
Results of the �-helix identification procedure applied to 2qu5.

The stages of the procedure are as indicated in Fig. 1. For each helix, the
minimum distance from the direction calculated by the published coordinates
(dist) and the order number (ord) are reported for the candidate solutions that
satisfy the criteria for its identification (10). In the case of more solutions, the
closest solution is reported in bold. In the first column, the number of residue
and (t, ’) position of each helices is shown.

dist (Å)/ord

Stage A Stage B Stage C

Helix 1: 17 residues (0.52, 10.8) 0.09/53 — —
Helix 2: eight residues (0.93, 3.3) 0.04/2, 3, 6, 7, 9,

19, 37, 41
0.09/2, 3 0.09/2, 3

Helix 3: 22 residues (0.93, 18.8) 0.07/2, 3, 37 0.06/2 0.06/2
Helix 4: 8 residues (0.90, 20.1) 0.04/2, 3, 5, 6, 7,

9, 37, 41
0.08/2, 3 0.08/2, 3

Helix 5: 17 residues (0.84, 34.0) 0.08/5 — —
Helix 6: 11 residues (0.35, 21.7) 0.11/14, 16, 22 0.12/8, 9 0.12/6, 11
Helix 7: 12 residues (0.93, 81.3) 0.04/8, 10 0.05/5 0.05/8
Helix 8: 19 residues (0.96, 74.8) 0.07/8 — —
No. of solutions 53 19 13
effhelix (%) 100 63 63
effsol (%) 28 26 39

Table 3
Results of the �-helix identification procedure applied to several data
samples related to the protein 1b9o.

For calculated data, the protein fragments used are reported. For each helix,
the minimum distance from the direction calculated by the published
coordinates (dist) and the order number (ord) are reported for the candidate
solutions obtained at stage C which satisfy the criteria for its identification
(10).

dist (Å)/ord

Data sample Helix 1 Helix 2

Experimental data — —
Calculated data: all of the protein — —
Calculated data: helix 1 + helix 2 + residues 5–21

+ residues 101–108
— —

Calculated data: helix 1 + helix 2 + residues 5–21 — 0.05/2
Calculated data: helix 1 + helix 2 + residues 101–108 0.06/4 —
Calculated data: helix 1 + helix 2 0.05/1 0.05/6



supplied which could be actively used in the framework of the

ARCIMBOLDO approach.

To better assess the contribution of our Fourier filtering

algorithm to improving the rotational search, we performed

the following test: all the orientations, sampled by the same

(t, ’) grid defined in point (iii) of x2.1, underwent the selection

criterion based on CORR. As a result, 3721 candidate solu-

tions were produced and 1782 were selected containing nine

correct orientations. This result should be compared with that

obtained by the standard procedure in step A. It should be

noted that in the top 50 solutions only the common orientation

of the three above-mentioned helices is represented and one

must go to the 1350th solution to find the nine orientations

represented. If a clustering procedure similar to that described

in x2.2 is applied to the selected solutions 38 solutions were

obtained, containing five correct orientations found in the first

11 solutions. Their mean dist value (0.06) is comparable with

that obtained by the standard procedure at step C, but the

number of solutions and their ranking is worse. The effi-

ciencies calculated for this test are reported in Table S1 under

entry 3gwhtest.

3.6. The 1gmg test case

The A31P mutant of the repressor of primer protein (PDB

entry 1gmg) forms a helix–turn–helix motif that homo-

dimerizes to form a four-helix bundle with two copies of the

motif in the asymmetric unit. The structure was originally

solved by the program Queen of Spades (Glykos & Kokkinidis,

2000) using a 26-residue polyalanine helix as the model and

an intensive 23-dimensional Monte Carlo search (Glykos &

Kokkinidis, 2003). Subsequently, the structure was solved by

the program Phaser (McCoy et al., 2007), which produced

many potential solutions and found the correct solution after

placing all four copies of the helical model. Our procedure

finds only two correct orientations at stage A, with only one

of them reaching stage C, which is the first of eight candidate

solutions.

We can envisage the following difficulty for the application

of our procedure to this test case: the four helices are roughly

parallel to the c axis, where the sampling in spherical coordi-

nates is less efficient (even if the t variable is used). On the

other hand, the very short b axis (about half of a and c)

indicates that the major bundle axis must lie on the ac plane.

We then re-ran our procedure by referring the spherical co-

ordinates to the y axis instead of the z axis (see Fig. 1), so that

the helices are found in the equatorial plane. In this case at

stage C all the helix directions were found in the top seven

solutions, with ten selected solutions. The corresponding effi-

ciencies are reported in Table S1 under entry 1gmgtest.

3.7. Overall results

The results of the application of the procedure to all of the

test structures are summarized in Table S1. The large number

of test structures allows a statistical analysis of the results. The

efficiency values averaged over all of the test structures and

measured at each selection stage of the procedure are

reported in Fig. 13. At stage A the highest value of effhelix

(77%) and the lowest value of effsol (19%) are attained. At

stage B effhelix decreases to 60%, with effsol remaining nearly

constant. As compensation, the average number of solutions is

greatly reduced by clustering the solutions, decreasing from 55

to 22. The final selection lowers effhelix to 48%, while effsol

increases to 26%. The average number of solutions obtained

at stage C (13) indicates that it represents a good compromise

between the demands of maximizing both the efficiencies and

reducing the number of solutions. On average, three of these

solutions (13�effsol) are close to a true �-helix orientation; the

remaining ten are false positives. It is worthwhile considering

that for specific applications it may be advisable to improve

the ranking of the solutions rather than reducing their

number. In this case, selection stage A would be the best

choice, because on one hand it corresponds to the higher

efficiency in finding �-helix orientations, while on the other it

supplies solutions naturally ordered according to the height of

the peaks in the jGn̂nð�Þj
2 section.

The dependence of the two efficiencies on some of the

relevant variables is analyzed in Fig. 14. The following can be

observed.

(i) effhelix decreases smoothly with data resolution (Fig. 14a)

and number of symmetry operations (Fig. 14b) at selection

stage A (empty markers).

(ii) At selection stage C (filled markers) a different

behaviour occurs, since effhelix increases with resolution for

resolutions higher than 1.2 Å and symmetry up to tetragonal.

This trend is already observed to occur at selection stage B

(data not shown).
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Figure 13
Efficiencies effhelix (squares) and effsol (circles) and number of solutions
(crosses) averaged over all the test structures measured at different stages
of the procedure. Error bars indicate the root-mean-square deviations of
the corresponding distributions.



(iii) effsol increases with both data resolution and number

of symmetry operations independently of the selection stage.

This is a consequence of the lower number of candidate

solutions found at lower resolution and higher symmetry.

No relevant dependence of the performance of the proce-

dure has been observed on the size of the protein structure

and on the number of helices to be found. The execution time

of the whole procedure is very limited. Even for the larger

structures results were obtained within a few minutes using a

2.6 GHz processor.

4. Outlook

A method of identifying �-helices and estimating their

orientations from X-ray diffraction data of protein crystals

has been described. The method is based on analysis of the

Patterson function interpolated on a grid in spherical co-

ordinates. This function was Fourier-transformed along the

radial direction and the resulting power spectrum was filtered

in the neighbourhood of the spatial frequency corresponding

to the characteristic pitch of �-helices. A peak-search analysis

of this power-spectrum section returns the possible �-helix

orientations of an unknown protein structure.

The availability of such information at the very first stage of

the phasing procedure is of great advantage in the framework

of the MR approach. It may be used for the following.

(i) To constrain the generation of or the search for homo-

logous models to be used by MR. In the first case the infor-

mation should be implemented in programs for ab initio

(Shortle et al., 1998; Zhang, 2008) or comparative modelling

(Sali & Blundell, 1993; Arnold et al., 2006) and in the second

case it should be used as an additional criterion in data mining

from the PDB. This application is possible when more than

one �-helix is present in the structure, in which case the

constraint consists of their mutual orientation.

(ii) To improve the location of the model in the unit cell.

This procedure could be embedded in the rotation step of MR

programs and the search for the best orientation of the model

structure could be improved by enhancing the �-helix signal.

(iii) To restrict the rotational MR search. The model

structure could be pre-oriented by aligning the �-helices with

the directions found by the procedure (this can also be

performed for models containing a single �-helix). The rota-

tional space explored during the subsequent MR run could

hence be restricted. This could be particularly useful for six-

dimensional MR programs (Chang & Lewis, 1997; Kissinger

et al., 1999; Sheriff et al., 1999; Glykos & Kokkinidis, 2000;

Jamrog et al., 2003) which, although more powerful than

standard three-dimensional plus three-dimensional searches,

require larger computation time.

(iv) To reduce the number of solutions obtained by MR

when a minimal model consisting of a single �-helix is used.

This strategy is chosen when an homologous model is not

available, but it has a disadvantage in the large number of

solutions that are obtained (Rodrı́guez et al., 2009; Dodson &

Woolfson, 2009).

Depending on the specific usage, different selection steps

could be most suitable: step A would be useful for improving

the MR search and step C for constraining model generation

or for restricting the rotational search.

The algorithm has an intrinsic efficiency of 77% in finding

�-helix orientations, despite the presence of a large number of

false positives within the sample of candidate solutions. The

efficiency remains 48% after a severe reduction of the number

of candidate solutions (13 on average). These figures are

affected by data resolution (a decrease in resolution has been
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Figure 14
Efficiencies effhelix (squares) and effsol (circles) measured at selection stages A (open markers) and C (full markers) averaged over all of the test
structures as a function of data resolution (a) and number of symmetry operations (b). Error bars indicate the root-mean-square deviations of the
corresponding efficiency values, while the size of the bins is inversely proportional to their content.



detected within the range considered) and by crystallographic

symmetry (the efficiency increases for higher symmetry). The

performance of the procedure is nearly independent of the

size of the structures and of the number of �-helices to be

found. �-Sheets were not found to systematically affect the

efficiency of the method, while the presence of specific

structural arrangements may interfere with the signal from the

�-helices in some cases, inhibiting their detection. The accu-

racy in the determination of the �-helix orientation depends

on its length: only helices consisting of more than seven resi-

dues and that are not bent may be found with reliable preci-

sion. The automatic procedure will be included in the next

release of the software package IL MILIONE (Burla et al.,

2007) devoted to protein crystal structure solution.

APPENDIX A
Symmetry restrictions in spherical variables

The symmetry operations of the protein space group restrict

the parameter space that needs to be explored in searching for

�-helix orientations. Strictly speaking, one should refer to the

asymmetric unit of the Laue class to which the protein space

group belongs. In International Tables for Crystallography the

asymmetric units are given in Cartesian coordinates (Hahn &

Looijenga-Vos, 2006) and we cannot use them by converting

the (t, ’) variables to Cartesian coordinates, since the range of

the (t, ’) variables used in our procedure does not coincide

with the range of the Cartesian coordinates in the unit cell.

Therefore, we found the limits of the asymmetric unit in the

space defined by the parameters (t, ’) by visual inspection of

the Patterson projections onto this plane. As an example, the

effect of 2/m symmetry can be seen in Fig. 8, while that of

mmm symmetry can be seen in Fig. 11. These rules depend on

the symmetry operations of the Patterson space group, as they

are defined in the crystallographic reference frame, and on the

choice of the reference system used to define our parameters.

The restrictions found are summarized in Table 4. In the

framework of the procedure, they are used to restrict the peak

search within the jGn̂nð�Þj
2 sections.
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Table 4
Restrictions on the (t, ’) parameters introduced by the Patterson
symmetry.

Laue class Range of t Range of ’

1 (�1, 1) (��/2, �/2)
2m (�1, 1) (0, �/2)
mmm (0, 1) (0, �/2)
4m (0, 1) (0, �/2)
4mmm (0, 1) (0, �/4)
3 (�1, 1) (0, �/3)
3m (�1, 1) (��/2, �/2)
6m (0, 1) (0, �/3)
6mmm (0, 1) (��/6, �/3)
m3 (0, 1) (0, �/2)
m3m (0, 1) (0, �/4)
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